El efecto invernadero es el proceso mediante el cual la absorción y emisión de radiación infrarroja por los gases en la atmósfera cálienta la atmósfera inferior de un planeta y su superficie. Fue propuesto por Joseph Fourier en 1824 y fue investigado primero cuantitativamente por Svante Arrhenius en 1896.
Los gases de efecto invernadero de origen natural tienen un efecto de calentamiento medio de unos 33 ° C (59 ° F). Los gases de efecto invernadero son elvapor de agua, que causa entre el 36 y el 70 por ciento del efecto invernadero; el dióxido de carbono (CO2), causa el 9–26 por ciento, el metano (CH4), causa 4–9 por ciento;. y el ozono (O3), es responsable del 3–7 por ciento. Las nubes también afectan el balance de radiación, pero están compuestos de agua líquida o hielo y así tienen diferentes efectos en la radiación del vapor de agua.
La actividad humana a partir de la Revolución Industrial, ha incrementado la cantidad de gases de efecto invernadero en la atmósfera, dando lugar a un aumento del forzante radiativo del CO2, el metano, el ozono troposférico, los CFC y el óxido nitroso. Las concentraciones de CO2 y metano han aumentado en un 36% y 148% respectivamente desde 1750. Estos niveles son mucho más altos que en cualquier momento durante los últimos 800.000 años, el período para el que existen datos fiables se ha extraído de muestras de hielo. Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago. Evidencia geológica indica que los valores de CO2 más superiores fueron vistos por última vez hace unos 20 millones de años. La quema de combustibles fósiles ha producido más de las tres cuartas partes del aumento de CO2 atribuido a la actividad humana en los últimos 20 años. El resto de este aumento se debe principalmente a cambios en el uso de la tierra, en particular la deforestación.
Aunque más gases de efecto invernadero se emiten en el norte que el sur, ello no contribuye a la diferencia en el calentamiento debido a que los gases de efecto invernadero persiste cuentan con tiempo suficiente para mezclarse entre los hemisferios.
La inercia térmica de los océanos y las respuestas lentas de otros efectos indirectos significa que el clima puede tardar siglos o más para adaptarse a los cambios en el forzamiento. Los estudios climáticos indican que incluso si los gases de efecto invernadero se estabilizan en los niveles de 2000, un calentamiento adicional de aproximadamente 0,5 °C (0.9 °F) seguiría siendo posible.
En las últimas tres décadas del siglo XX, el PIB per cápita y el crecimiento poblacional fueron los principales impulsores del aumento de las emisiones de gases de efecto invernadero. Las emisiones de CO2 siguen aumentando debido a la quema de combustibles fósiles y el cambio de uso del suelo. Las estimaciones de los cambios en los niveles de emisiones futuras de gases de efecto invernadero, se ha proyectado que dependen una incierta evolución económica, sociológica, tecnológica y natural. En la mayoría de los escenarios, las emisiones siguen aumentando durante el siglo XXI, mientras que en unos pocos, se reducen. Estos escenarios de emisiones, junto con el modelo del ciclo del carbono, se han utilizado para producir las estimaciones de cómo las concentraciones atmosféricas de gases de efecto invernadero van a cambiar en el futuro. El IPCC SRES sugiere que para el año 2100, la concentración atmosférica de CO2 podría oscilar entre 541 y 970 ppm. Esto representa un aumento de 90 a 250% por encima de la concentración en 1750. Las reservas de combustibles fósiles son suficientes para llegar a estos niveles y mantener las emisiones después de 2100, si el carbón, las arenas bituminosas o el hidrato de metano son ampliamente explotados.
Los medios de comunicación populares y el público a menudo se confunden el calentamiento global con el agujero de ozono, es decir, la destrucción del ozono estratosférico por parte los clorofluorocarbonos. Aunque hay unas pocas áreas de vinculación, la relación entre los dos no es fuerte. La reducción de la capa de ozono estratosférico ha tenido una ligera influencia de enfriamiento de las temperaturas de superficie, mientras que el aumento del ozono troposférico ha tenido un efecto de calentamiento algo más grande.
Fuente:
- Costa Morata, Pedro (25 de septiembre de 2010). «Del posible impacto climatológico de los desequilibrios electromagnéticos de origen antropogénico» (en español). Revista Bibliográfica de Geografía y Ciencias Sociales. Universidad de Barcelona. Consultado el 5 de junio de 2011. «Sobre la analogía, expuesta en 1827 por Fourier, entre el comportamiento del calor en la atmósfera terrestre y en un invernadero, construyó Svante Arrhenius en 1896 la teoría de que el aumento de la concentración de CO2 en la atmósfera incrementaría este efecto e induciría calentamiento global.».
- IPCC (2007). «Chapter 1: Historical Overview of Climate Change Science» (PDF). IPCC WG1 AR4 ReportClimate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change págs. p97 (PDF page 5 of 36). IPCC. Consultado el 21 de abril de 2009. «To emit 240 W m–2, a surface would have to have a temperature of around −19 °C. This is much colder than the conditions that actually exist at the Earth’s surface (the global mean surface temperature is about 14 °C). Instead, the necessary −19 °C is found at an altitude about 5 km above the surface.».
- Kiehl, J.T. (1997). «Earth's Annual Global Mean Energy Budget» (PDF). Bulletin of the American Meteorological Society 78 (2): pp. 197–208. doi: . Archivado del original el 2008-06-24.
- «Water vapour: feedback or forcing?». RealClimate (6 Apr 2005). Consultado el 21 de abril de 2009.
- Russell, Randy (16 de mayo de 2007). «The Greenhouse Effect & Greenhouse Gases». University Corporation for Atmospheric Research Windows to the Universe. Consultado el Dec 27, 2009.
- EPA (2007). «Recent Climate Change: Atmosphere Changes». Climate Change Science Program. United States Environmental Protection Agency. Consultado el 21 de abril de 2009.
- Spahni, Renato; et al. (November 2005). «Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores». Science 310 (5752): pp. 1317–1321.doi: . PMID 16311333.
- Siegenthaler, Urs; et al. (November 2005). «Stable Carbon Cycle–Climate Relationship During the Late Pleistocene» (PDF). Science 310 (5752): pp. 1313–1317. doi: .PMID 16311332.
- Petit, J. R.; et al. (3 de junio de 1999). «Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica» (PDF). Nature 399 (6735): pp. 429–436.doi: .
No hay comentarios:
Publicar un comentario